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This report  covers the period f rom February to  August, 1966. 

During two months of this period a graduate research  assis tant  was 

employed making the total time spent on this contract 4. 25 man months. 

The major effort has  been on an intensive study of approaches 

taken by Gustafson (6) in approximation techniques and to  Krishnamurthy (4) 

on matrix iteration techniques for finding roots. 

been made on Krishnamurthy' s method. 

pages. 

Some improvements have 

These are  reported in  the following 

A summary of Gustafson' s approach is a l so  included. 

In the remaining research  period further work will not be done on 

the matrix approach. 

techniques as they are concerned with different design specifications of 

automatic control systems. 

Most of the work will be in evaluation of approximation 
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KRISHNAMURTHY APPROACH 

E. V. Krishnamurthy in reference (4) presents a matr ix  approach 

t o  the problem of root finding. Given a polynomial, first the companion 

mat r ix  of this polynomial is formed, then the eigen values of the matr ix  

are found. 

the roots of the polynomial, the root finding problem is converted to an 

algebraic eigenvalue problem. 

Since the eigenvalues of the companion mat r ix  a r e  equal to  

Krishnamurthy suggests using the mat r ix  power method to  find 

the eigenvalues. This method, basically an  i teration process ,  will 

converge on the real eigenvalue with the la rges t  modulus. 

trial vector is multiplied by the companion matrix.  

is then examined to  see  if  it differs from the original trial vector by a 

constant multiplier. 

eigenvalue. If not, as is usually the case with the first i terations,  the 

resulting vector is then multiplied by the companion mat r ix  and the process 

is continued until it "converges" on an eigenvector and eigenvalue. 

specting the method, we see that if the process  converges after M iterations, 

then the original trial vector has been effectively multiplied by the companion 

matrix M times. Krishnamurthy suggests using the Caley-Hamilton theorem 

to  represent  the high power matr ix  in  t e r m s  of the first N- 1 powers of the 

mat r ix  for  an Nth order  polynomial. The Caley-Hamilton theorem states 

that any square mat r ix  (the companion matrix is square) satisfies its own 

character is t ic  equation; so  for a given polynomial: 

An arb i t ra ry  

The resulting vector 

If so, the constant multiplier is the sought after 

In- 

n- 2 Sn t An-1 Sn-' t An-2 S t . . . t AIS t A0 = 0 

the companion matrix: 
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A =  

0 0 .  . . . 0-A0 

1 0 .  . . . 0-A1 

0 1 .  . , . 0-A2 I . . . . . . . . , 
L O O .  . . . 1-A n- 

n X  n 

satisfies the above polynomial. Therefore: 

t . , . +AiA t AoI) An = - (An-l An- 1 

or for m = nr: 

(2) Am = (An)I = ( - I ) =  (An-l An-' t . . . t A1A + A o I ) ~  

and any terms of order  higher than N - 1  resulting f rom the expansion of the 

right s ide of equation (2) a r e  reduced t o  a l inear combination of the f i r s t  

N-1 powers of A by successive substitutions of equation (1). 

power mat r ix  is formed, then the multiplication of an a rb i t ra ry  vector by 

the matrix will yield approximately the eigenvector corresponding to  the 

highest modulus real eigenvalue, t imes some constant (not the eigenvalue). 

This vector is then multiplied by the companion matr ix  A to find the eigen- 

value. 

Once the high 

The Krishnamurthy process has been shortened by the following 

modifications. 

An efficient method has been developed t o  obtain the algebraic 

expression for  the high power matr ix  using the coefficients of the given 

polynomial. 

The need for  constructing the high power matrix itself has been 

eliminated. Noting the following properties of the high power matrix: 

3 



A) If the given polynomial is of o rder  N, the first N- 1 powers 

of the companion matrix A will have the first column 

consisting of one "1" and the rest zeros.  

B) The columns of the high power matrix a r e  l inearly dependent, 

i. e. , they differ only by constant multiples. These columns_ 

are in fact equal to  constant multiples of the eigenvector 

corresponding t o  the highest modulus eigenvalue. 

apparent for two reasons: 

1) F r o m  observation of matr ices  formed f rom specific third 

This is 

and fourth order  equations. 

2) F r o m  the observation that the only construct of a mat r ix  

that will t ransform any arb i t ra ry  (non- zero)  vector into 

a certain eigenvector (times a constant) is that the columns 

of the matrix be constant multiples of that eigenvector. 

If the elements of the high power matrix are  designated as 

Aij and the algebraic expression for the high power mat r ix  is: 
C) 

. . . + CZA + C I I  Am = C A n- 1 + Cn-lAn'2 + 
n 

Then: Ail = Ci (i = 1, 2, . . . N). 

high power mat r ix  is  composed of the coefficient of the 

algebraic expression for  the high power matrix.  

The first column of the 

Thus the  eigenvector corresponding to the eigenvalue being sought is 
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Multiplication of this vector by the comparitively simple companion 

matrix will yield the eigenvalue (root). 

An example of finding the highest modulus r ea l  root of a fourth 

order  equation using the matrix approach is given in appendix A.  

If the eigenvalues with the largest  modulus are a complex 

conjugate pair ,  then the method described above will not converge, i. e. , 
the iteration would oscillate. 

for obtaining complex eigenvalues: (1) using the knowledge of th ree  

successive high order  i terates  to  form two simultaneous equations whose 

solutions give the real and imaginary par t s  of the sought-after eigenvalues (5). 

Note that in this case the entire high power matr ix ,  Am, has  t o  be formed, 

and then multiplied twice by A to form three  successive high power i terates ,  
m o m t l  o Am+2X0 

A X , A  X ,  . (2) The second method involves iteration with 

an assumed complex vector.  During the iteration, though, each trial vector 

has  to  be normalized so that the highest modulus element of the vector is of 

the fo rm 1 + Oj. In this case there  is no shortcut; all the iterations have to  

be car r ied  out (i. e . ,  AIX(0), AX1, . . . AXm). 

Krishnamurthy suggests two procedures 

If the highest modulus roots a re  equal roots, then convergence to  

the roots using the matrix power method may occur a s  it does for the 

single root o r  it may be extremely slow. 

properties of the matrix (i..e., whether or not there  is a linearly independent 

eigenvector associated with each of the repeated eigenvalues). 

h e r e  the ent i re  high power matr ix  need not be formed. 

alone may be used as the eigenvector; but i t  may be required to use  

extremely high powers, 

The convergence depends on the 

Note that 

The first column 

For roots of equal modulus (i. e . ,  one real and two complex 

conjugate roots of the same modulus), the i teration will oscillate a s  in 

the case of the complex conjugate roots. 

will equal modulus multiplicity. 

But the successive iterates 

If a constant rea l  matrix PI i s  added to 
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A this will cause the moduli to separate and the i teration would converge 

on the real root. The eigenvalues would change from: XI, ReX2 t iImXz, 

ReAz - i I m 1 2  to: 11 t pl, (ReXz + p) t iImh2, (Rei2  + p) - iImXz, thus the 

I 

, real eigenvalue now has the highest modulus. Note that i f  the new matrix 

is formed (A t PI), the properties of this new matr ix  have not been 

investigated to find a shortcut to  the iteration. 

After the highest modulus root(s) have been found, the given 

polynomial may be reduced by dividing found root(s) out. 

companion mat r ix  of lower order  is formed and the process is continued. 

A new 
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GUSTAFSON 

The Gustafson approach t o  approximating control equations ( 6 )  

is to  produce two second order  transfer functions whose t ime response 

approximates the t ime response of the nth order  system. 

Given a system transfer  function (with no zeros)  of the form: 

0 
b 

F(S) = 
A Sn t . . . t AzS't AIS t A 

n 0 

Gustafson constructs, directly from this, an approximating function 

called the truncated function of the second order:  

He shows that the zeroeth, f i rs t ,  and second time moments of 

the impulse response of Tz(S) a r e  identical with those of equation (1) above. 

Now the Tz(S) function would not include an oscillating high frequency 

mode that might be present in the F(S) function. 

any high frequency "buzz" the Integral of the Squared Impulse Response (ISIR) 

is computed for  the F(S) function and compared to  the ISIR for  the Tz(S) 

function. Gustafson shows that the ISIR of the F(S) function will always be 

grea te r  than the ISIR of the Tz(S) function. The closer  these two values are, 

the c loser  the Tz(S) response approximates the system response. 

To measu re  the effect of 

It is shown that the ISIR of the F(S) function can be computed f rom the 

The Routh Array  (modified last two elements of the Routh Ar ray  for F(S). 

by Moore (3)) fo r  F(S) is shown in Figure 1 .  
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..... Az n- 2 *n- 3 A 
0 

A 

Another approximating function called the associated function of the 

second order  i s  constructed. 

b 
0 

Az(s) = 
Rn-2SZ t R n- 1 S t A 0 

Then the ISIR of the F(S) function is identical with that of the 

Az(S) function. So computing the ISIR's  f rom the Routh Array  

b2 1 0 

2 
R n - l  o 

ISIR F(S) = ISIR Az(S) = - 
A 
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b2 1 0 
2 and: ISIR Tz(S) = - 

&Ao 

then defining the energy ratio: 

A1 

n- 1 
- ISIR Fz(S) - -  El = ‘m R 

This ra t io  indicates how closely Tz(S) approximates F(S). 

The Az(S) function is shown to have zeroeth, f i r s t ,  and second 

frequency moments of its spectral  energy distribution identical to the 

corresponding moments of the F(S) function. Also the natural  frequency 

of the Az(S) approximation is shown to  be equal to  the W 
F(S) function. 

of the rms 

Gustafson then shows the following step response properties of 

the T2(S) and Az(S) approximating functions. 

T& - - - The s tep response of T&) has about the same mean time 

delay as the sys tem response (resulting f rom identical 

first t ime moments) and is generally a lower bound on 

overshoot. 

A&)-- The s tep response of A&) has about the same r i s e  t ime 

as the sys tem response (resulting f rom identical Wrms) 

and is generally an upper bound on overshoot. 

Thus the system response is seen to  be approximated by two known 

second order  responses. The accuracy of the approximations A2(S) and 

T2(S) can be compvted o r  fixed by the designer using the El ratio. 

Gustafson found that a tolerance of 1.4 to  1. 6 for El yields good resul ts .  
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APPENDIX A 

EXAMPLE OF MATRIX APPROACH TO FIND A REAL ROOT 

Given the polynomial X't  5X3 + 9X2 t 7X t 2 = 0, whose roots 

a r e  (- 1, - 1, - 1, -2) .  

matrix approach. 

Find the highest modulus real root using the - 

First generate algebraic representation of the high power matrix.  

(1) x' = - (5x3 t 9X2+ 7 x  t 2) 

I 1  normalizing" 

coefficients and "synthetic squaring:" 

I/ 5 X' = - (X3 + 1. 80X2 t 1 . 4 X  t . 4). Then using the 

1. 00 1. 80 1. 40 . 4 0  

1. 00 1. 80 1. 40 . 4 0  

.@. 00) .8(1. OC) - 8 0 .  40) . 16 

2. 8 0  @. 8)l. 80 (1.40)2 - - - -  
1.00 3 .  60 (1.80)' - - - -  - - - -  

1 -x8 25 = 1.00 3. 60 6. 04 5. 84 3, 40 1. 12 . 16 (a) 

and for  a constant k: 

1. 12X + . 16 but f rom (1) above: 

kX8 = I .  OOX't 3. 60X5 t 6. 04X4 t 5. 84X3 t 3.40' f 

1. OOX' = - X2 (5x3 t 9x2 t 7 x  + 2) 

- (5x5 t 9x4 t 7x3 t 2x2) = 

so: 

kX8 = (-5X5) - 9X' - 7x3 - 2x2) + 
3. 60X5 t 6. 04X4 t 5. 84X3 t 1.12X t . 16 

kX8 = - 1. 40X5 - 2. 96X' - 1. 16X3 t 1.40X2 + 1, 12X t . 16 

or kX8 = - 1. OOX5 - 2. l lX* - 8. 24X3 t 1. OOX't .80X t . 114 
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then again f rom ( I )  above we see that: 

-1.  00x5  = x(sx3 + 9x2 t 7 x  t 2). 

And the process  continues- - 
But an  algorithm can be used to do these succeFsive substitutions more  

efficiently. Going back t o  line (2). 

XB = 

substituting 

subtracting 

normalizing 

substituting 

subtracting 

normalizing 

substituting 

subtracting 

normalizing 

squaring 

k4X l6 

substituting 

subtracting 

normalizing 

sub s t ituting 

subt r acting 

normalizing 

substituting 

subtracting 

1. 00 3. 60 6. 04 5. 84 3 .40  1. 12 . 16 

k - 5 . 0 0  -9 .00  -7 .00  -2 .00  
-1 .40  -2 .96  -1. 16 t l . 4 0  

-1 .00  -2 .11  - . 8 2 9  t l . 0 0  t , 8 0  t .114  

t 5 . 0 0  t 9 . 0 0  t 7 . 0 0  t 2 . 0 0  

2.89 t8 .  171 t8 .  00 t 1 . 8 0  

1.00 t 2 . 8 3  t 2 . 7 7  t .969  t . 0394 

k - 5 . 0 0  -9 .00  -7 .00  -2.000 

-2.17 -6 .23  -6. 031 - 1,9606 

k3X8 = 1.00 t 2 . 8 7  t 2 . 7 8  t . 9 0 4  

1. 00 t 2 . 8 7  t 2 . 7 8  + . 9 0 4  

1.81 +5.19 + 5 . 0 3  t . 8 1 7  

5.56 t 1 5 . 9 6  4-7.73 - - - -  
_ _ - _  1. 00 5.74 8 . 2 4  - - - - -  

1.00 t 5 . 7 4  t 1 3 . 8 0  4-17.77 t 1 2 . 9 2  t 5 . 0 3  -t -817 
N - 5 . 0 0  - 9 . 0 0  - 7 .00  - 2 .00  

. 7 4  t 4 .80  t 1 0 . 7 7  t 1 0 . 9 2  

1. 00 t 6 .49  t14 .  55 t 1 4 . 7 6  t 6 . 8 0  t 1 .  104 

x- 5.00 - 9 .00  - 7 .00  -2 .00  

1.49 t 5. 55 + 7 .76  t 4 . 8 0  

1.00 3 .73  5 .21  3.22 . 7 4 1  

- 5.00 - 9 . 0 0  -7 .00  - 2 . 0 0  

- 1.27 - 3.79 -3 .78  -1 .26  

1 . 0 0  2. 98 2.98 . 9 9 2  normalizing k k 1 6  = 
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Now assuming that sixteen "iterations" a r e  enough we will  find 

the eigenvalue. 

algebraic expression for the high power (16) matrix. 

The "eigenvector" is  found f rom coefficients of the 

2.98 -9 + 2.98 6. 02 
1. 00 -5 -I- 2.98 2.02 

eigenvector 

then removing the constant. 

Eigenvalue (root) = - 2. 02 
1. 00 

The correctness  of the eigenvalue can be checked by comparing the 

multiplied vector with the product vector to  see i f  they a r e  equal. 

the 70 of difference in the two vectors is approximately the 70 of e r r o r  

in the eigenvalue. 

can be used. 

If not, 

If the e r r o r  is too large,  a higher power matr ix  expression 

The next step in this case would be the 32nd power. 
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